Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Health Sci Rep ; 5(6): e856, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2059428

ABSTRACT

Background and aims: Despite global vaccination efforts, the number of confirmed cases of coronavirus disease 2019 (COVID-19) remains high. To overcome the crisis precipitated by the ongoing pandemic, characteristic studies such as virus diagnosis, isolation, and genome analysis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are necessary. Herein, we report the isolation and molecular characterization of SARS-CoV-2 from the saliva of patients who had tested positive for COVID-19 at Proving Ground in Taean County, Republic of Korea, in 2020. Methods: We analyzed the whole-genome sequence of SARS-CoV-2 isolated from the saliva samples of patients through next-generation sequencing. We also successfully isolated SARS-CoV-2 from the saliva samples of two patients by using cell culture, which was used to study the cytopathic effects and viral replication in Vero E6 cells. Results: Whole-genome sequences of the isolates, SARS-CoV-2 ADD-2 and ADD-4, obtained from saliva were identical, and phylogenetic analysis using Bayesian inference methods showed SARS-CoV-2 GH clade (B.1.497) genome-specific clustering. Typical coronavirus-like particles, with diameters of 70-120 nm, were observed in the SARS-CoV-2 infected Vero E6 cells using transmission electron microscopy. Conclusion: In conclusion, this report provides insights into the molecular diagnosis, isolation, genetic characteristics, and diversity of SARS-CoV-2 isolated from the saliva of patients. Further studies are needed to explore and monitor the evolution and characteristics of SARS-CoV-2 variants.

2.
Nat Commun ; 12(1): 288, 2021 01 12.
Article in English | MEDLINE | ID: covidwho-1026824

ABSTRACT

Vaccines and therapeutics are urgently needed for the pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Here, we screen human monoclonal antibodies (mAb) targeting the receptor binding domain (RBD) of the viral spike protein via antibody library constructed from peripheral blood mononuclear cells of a convalescent patient. The CT-P59 mAb potently neutralizes SARS-CoV-2 isolates including the D614G variant without antibody-dependent enhancement effect. Complex crystal structure of CT-P59 Fab/RBD shows that CT-P59 blocks interaction regions of RBD for angiotensin converting enzyme 2 (ACE2) receptor with an orientation that is notably different from previously reported RBD-targeting mAbs. Furthermore, therapeutic effects of CT-P59 are evaluated in three animal models (ferret, hamster, and rhesus monkey), demonstrating a substantial reduction in viral titer along with alleviation of clinical symptoms. Therefore, CT-P59 may be a promising therapeutic candidate for COVID-19.


Subject(s)
Antibodies, Neutralizing/pharmacology , COVID-19 Drug Treatment , Protein Binding/drug effects , SARS-CoV-2/drug effects , Spike Glycoprotein, Coronavirus/drug effects , Angiotensin-Converting Enzyme 2/chemistry , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chlorocebus aethiops , Disease Models, Animal , Female , Ferrets , Humans , Leukocytes, Mononuclear , Macaca mulatta , Male , Mesocricetus , Models, Molecular , Protein Conformation , Spike Glycoprotein, Coronavirus/chemistry , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL